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Abstract. In this paper the critical behaviour o f  a system undergoing a dimensional 
E T O S S O Y ~ ~  is investigated. A renormalization group equation is obtained that interpolates 
between different dimensions. The susceptibility of an Ising-like system is treated in Same 
detail, in particular an effective critical exponent for the susceptibility is computed, which 
for the particular crossover examined interpolates between the susceptibility exponents 
appropriate for a (4- 6)-dimensional and a (3 - E)-dimensional king model. 

F r ~ m  finite-size s d i n g  arguments we expect [I! !ha! the C r ~ s ~ n v e r  from the critical 
behaviour characteristic of one dimension to that of another should have a universal 
character. Apart from some exact models and some numerical investigations 121 (see 
[3] for a good review) attempts to investigate this crossover quantitatively have either 
not been very general or very successful [4]. It is important to rectify this situation for 
several reasons. Chief amongst these are (i) t o  provide a possible explanation of some 
'anomalous' experimental results in finite-size scaling [5] and (ii) to examine the 
validity of the finite-size scaling hypothesis [ l ]  itself throughout the dimensional 
crossover. In  this paper we sketch a method of calculating the crossover for an king-type 
system and give explicit results for the susceptibility. 

Our approach is to derive a renormalization group equation that corresponds 
qualitatively to a lattice decimation procedure. One knows that, in a lattice where one 
of the dimensions is of finite extent, decimation will eventually run out of lattice points 
to eliminate in the finite direction. Further decimation can oniy occur in the remaining 
directions. In  continuum language this type of lattice renormalization is described by 
renormalization group equations. We therefore should look for renormalization group 
equations that have this qualitative feature of dimensional crossover. The renormaliz- 
ation group must change from that characteristic of one dimension to that of another. 
From finite-size scaling arguments we expect the relevant parameter governing which 
side of the crossover we are at to be L/ f  where L is the size of the finite domain and 
f is the correlation length in the system. In this paper we will obtain a renormalization 
group equation that has the desired features by using an explicitly L-dependent 
renormalization scheme. 

The particular model we will consider for simplicity will be an Ising-like model on 
a space S' x R3-". In this case L is the circumference of the S ' .  Intuitively one would 
expect that as L/c+oo the model should have a critical behaviour characteristic of 
4 - - ~  dimensicns; on the other hand as L/c+O it  should have (3-~)-dimensional 
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behaviour. Of course it is a completely different matter to develop a quantitative scheme 
within which this intuition may be verified. Most difficulty, as we shall see, is associated 
with the regime L/C-  1. We start with the canonical Landau-Ginzburg Lagrangian 
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(1) 

en.b!es "S to shift .w.y from the critica! pein:. The sna!ysis of this. !henry has. a !ang 

L = i ( v + B ) 2 + $ m i + i + -  A B  4B+ftB4i,  4 

4! 

We include the term ftB+', and consider it to be in the interaction Lagrangian; this 

history, in particular in the theory of finite-size scaling (see for example [4]) and in a 
different guise in finite-temperature field theory (see for instance [6]). The canonical 
lore on the matter seems to be that one should go ahead and renormalize this theory 
in the 'standard' manner, e.g. by using minimal subtraction in 4G.5 dimensions. The 
philosophy is that because renormalization is concerned with ultraviolet divergences 
the same counterterms which suffice to renormalize the bulk theory will renormalize 
the finite system. However, though the bulk counterterms are sufficient to remove 
ultraviolet divergences to all orders, in the limit L /c+ 0 new divergences appear which 
are not associated with the short-distance behaviour. This can be simply illustrated by 
calculating to I-loop the inverse susceptibility of the system [7] which is 

where T = T- T,(m), T,(m) being the critical temperature of the bulk system, and 1 
is the dimensionless coupling constant. In the limit L27+0 the 1-loop correction term 
is diverging relative to the tree-level term even though we have regulated the ultraviolet 
regime. One cannot hope, therefore, to get a sensible three-dimensional limit from this 
approach. Higher loop corrections are even more divergent. 

An alternative procedure one might choose to follow starts by Fourier expanding 
4 k  Y )  

This leads to an effective Lagrangian, now in terms of renormalized quantities 

Le, = $(v&,)' +$n2&,+$&+- 4: A 
4!L 

By an invocation of the Applequist-Carrazone decoupling theorem [8] or some such, 
one would argue that in the limit L+O the n > O  modes become very massive and 
decouple from the theory leaving an effective theory of just the n = 0 mode. One would 
then proceed to renormalize this effective theory. Indeed, one would find that the 
relevant critical exponents were those of a three-dimensional theory. However, having 
dropped all the n # 0 modes, and in particular any L dependence, one could never 
get any information about the higher-dimensional theory. In terms of n the passage 
from the three-dimensional to the four-dimensional limit is completely non-perturba- 
tive. This non-perturbative aspect is the reason why the regime L 2 ~ -  1 is so difficult 
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to treat. Charged with the information that the only true critical point of the system 
for fixed L is the three-dimensional one, it is natural to choose an approach that 
emphasizes this. Since (1) emphasizes the bulk theory whereas (4) emphasizes the 
three-dimensional theory we find (4) a more appropriate starting point. For L/C+O 
we expect the n = O  sector to dominate. However, we also know that (4) is just (1) 
rewritten in a different format and consequently that the higher-dimensional behaviour 
should be recoverable from it. So let us proceed and first calculate the p function for 
the theory. 

In calculating the renormalized coupling constant we will use the following nor- 
malization condition for the renormalized four-point coupling of the n = 0 modes of 
the Lagrangian (4), r!&lsp=hK'/L, where SP denotes the symmetric point. The 
relationship between the bare and renormalized coupling constants to 1-loop is then 

In contrast to what one obtains by minimal subtraction the counterterms in this 
prescription are L dependent. The p function p = K dh/dKIL,Ag arising from this 
subtraction is 

For LK + Q) we can replace the sum by an integral to find in an &-expansion 

3h2 p ( h )  = -sh+,+O(X2 e-L"). 
1 6 ~  (7) 

For LK + 0 only the n = 0 term is important giving 

An equivalent but more satisfying expression than equation (8) may be obtained by 
realizing that as seen in (4) the effective three-dimensional coupling constant is not A 
but AIL, or in terms of dimensionless couplings ~ / K L ,  which we all U. In terms of this 
effective coupling 

3u2 p ( u )  = -E'u+-+o(u~L'K')  
16rr2 

where E ' =  1 + E .  Thus we see that the p function (6) interpolates in a smooth fashion 
between the 3 - ~ ( = 4 -  E')-dimensional and (4- €)-dimensional fixed points. 

After demonstrating that a subtraction based on normalization conditions gives a 
satisfactory p function, in contradistinction to straightforward minimal subtraction, 
we will now show that there is a modified version of minimal subtraction which will 
work. This simpler procedure we will call generalized minimal subtraction (OMS) after 
Amit and Goldschmidt [9] who used an analogous method to consider crossover 
behaviour from an O ( N )  to an O ( M )  model in fixed dimension at a bicritical point. 
The essence of the technique is that one should choose counterterms that remove both 
ultraviolet divergences and those arising from some other relevant limit, e.g. 7L2+0, 
as discussed in association with equation (2). In our problem we would like both the 
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L+O and the L+co limits to have sensible finite-renormalized values. With this in 
mind the relationship between A B  and h in GMS is 
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Thus 
4 T 2 n 2  -1-a'/2 

p ( x )  = -(E'- t)x +- 3x2 ( 4 ~ ) * " ~ r ' (  1 +:) f (1 + )  L ~ K ~  
1 6 ? r 2 L ~  n=-m 

For LK + m and LK + 0 we get back equations (7) and (9) respectively. If one uses an 
E'-expansion on the last term of equation (11) one obtains the surprisingly simple form 

(12) 

The thing that is significant about these results is that p = p ( x ,  LK), i.e. p is explicitly 
L-dependent. This has come about because we have used renormalization schemes 
which are explicitly L-dependent, and this in turn was necessitated by the requirement 
that the theory have a sensible L- 0 limit. Some insight into the nature and role played 
by L-dependent renormalization schemes can be gained by examining further the OMS 

scheme. If one examines equation (lo), one sees that the GMS term interpolates between 
the minimal subtraction schemes appropriate for (4- E ' ) -  and (4- €)-dimensional 
systems, yielding leading terms - l /&',  and 1 / ~  in the respective limits LK+O and 
LK + W. 

The running coupling constant x( p ) ,  where p is just the standard dilatation para- 
meter, is a solution of the characteristic equation 

with the initial condition u(1) =U. Solving (13) using equation (12) one finds 

As p + 0 for fixed L, i.e. as we approach the critical point, one can use a small argument 
expansion of coth x to find 

which gives U( p )  + 16?rZ&'/3 as p + 0. For LK"+ CO, p + 0 but L K , ~  >> 1 one uses a large 
argument expansion of coth x to find, after changing back to h( p )  = ( L ~ p / Z ) u ( p ) ,  that 

which gives in the limit p +0, LK,", L ~ , p + m  that x + 8 ? r 2 ~ / 3 .  Whether we reach 
the ( 4 - ~ ) -  or (4-~')-dimensional fixed point clearly depends on how we treat the 
p + O  limit. If, for fixed L K ~  we let p-0,  which physically corresponds to letting 
L/[- 0, then the (4 - E')-dimensional fixed point is reached; however, if p + 0 but at 
the same time LK,+w such that L K , ~ + c o ,  the (4- &)-dimensional fixed point will be 
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reached. This is the conventional regime of finite-size scaling [ l ,  101. By solving the 
renormalization group equation 

where y+ = ~ ( 8  In Zh)/aKI,,, one can show that 

r " ' ( p k , ,  L, U, K )  

where u ( p ) ,  the solution of the characteristic equation (13) ,  must be inserted in ym. 
Notice that as p + 0, Lp + 0, in other words the critical region is equivalent to letting 
L+O. 

Equation (18) can now serve as  a starting point for calculating crossover functions 
and effective critical exponents. To do  this we need to consider the theory above the 
critical point. To this end we will set the renormalized mass m 2  = 0 in (4). The parameter 
f = T- T,(L),  T,(L) being the critical temperature of the system of size L as distin- 
guished from the bulk critical temperature T,(m), then becomes a measure of how far 
the system is away from criticality. It is in fact the physically sensible variable with 
which to quantify the dimensional crossover. The relationship between f and !e is 
f B  = Z+zf. We demand that .Z62 have a sensible L + 0 limit so once again an L-dependent 
renormalization scheme must be used, either in the guise of a suitable normalization 
condition or GMS. Above T,( L )  the appropriate renormalization group equation is 

where ym2= -K(JlnZ+2)/aKIL,,,. One characteristic equation of (19) is (13), the 
equation for the running coupling constant, another 

leads to a definition of a running temperature f ( p )  via 

with the initial condition t(1) = f. The solution of this equation is 

One can now use equation (19) to find the relationship between the two-point function 
of 

the dilatation parameter; p = 1 and p say. 
rb'd(a, ;, L, *.), which is ius; ;he in:7erse suscept$)i!i!y x-', a! pwc &fiere-!  
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As p is an arbitrary parameter we can choose it so that t (  p )  is out of the critical region, 
e.g. t ( p ) = ~ ~ .  When substituted back into equation (22) this gives us an implicit 
equation for p = p( l ,  L, K ) .  Carrying out the above analysis to I-loop one finds 
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where cI is determined by mass renormalization and c2 from composite operator 
renormalization. Using the normalization conditions x-'(O, L, K )  = 0 and 
x - ' ( K ~ ,  L, K )  = K~ and dimensional analysis one finds after using equation (23) that 

where one must use p - p ( t ) .  
One can define an effective critical exponent ye* for the susceptibility as 

Therefore 

d In p2 
Yefl = ~ d l n t  

Using equation (22) and the condition f( p )  = K' one obtains 

-- d In p2 
d l n t  

An explicit computation of ym2 yields 

4 T 2 n 2  - s ' / 2  4 T 2 n 2  - e ' / 2  

(29) 

It is not difficult to check that despite appearances this function is finite. The reader 
might despair as to whether such a forma! lookine expression has any utility whatsoever 
as an expression leading to a crossover function. The reason we have left it in such a 
formal state is that there are several approximation schemes which can be employed 
in its evaluation. For example one may employ an E ' -  or an e-expansion throughout. 
Alternatively one could set E ' =  1 thereby working in fixed dimension. One may also 
exploit different approximation schemes in different regimes. For instance, in the 
regime tL2 >> 1 one might expect an €-expansion to be more appropriate, whilst for 
fL2<< 1 an &'-expansion would be better. It is important to realize, though, that the 
true expansion parameter through the entire crossover is the running coupling itself, 
not E or E'; the latter cannot be treated as small parameters throughout the crossover. 
If for f L 2 + m  an e-expansion is used one finds 

4772n2 

+ - K l + z )  tL -(T) 1). 

On the other hand if for tL2+0 an &'-expansion is used one obtains 

(31) 
E '  

6 
yen= l+-+O(&'L2t). 
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In the same way that we used an E’  expansion to generate simple expressions from 
(11) one can derive from (29) the following fairly simple form 

where u ( f / K 2 )  must be substituted in from the p-function expressions. It seems quite 
remarkable that one can obtain such a simple functional form with which to describe 
the entire crossover regime. 

Let us briefly comment on the validity of these results. For tL2 >> 1 if one performs 
an &-expansion one will end up with an answer which has the same asymptotic validity 
as the conventional ‘&-expansion’ in 4 - E  dimensions. On the other hand for t L * e  1 
if one performs an &’-expansion one will end up with an expansion in E’ which has 
the same asymptotic validity as the conventional ’&-expansion’ in 4- E ’  dimensions. 
For S’X R2 we would end up with expressions in the limits f L 2 + m  and f L 2 + 0  which 
were those of a three-dimensional and a two-dimensional system as calculated using 
standard ‘&-expansions’, i.e. in the former E = 1 and in the latter E = 2. If we are 
concerned with the entire crossover then one is relying on the fact that u ( ~ / K ~ ,  tL2) is 
small throughout the crossover. This will not be true in general; in this case one would 
wish to work to multiloop order and perform a Bore1 summation. In principle this can 
be done using the methods herein, the only real difficulty being one of computational 
facility. One would still expect low orders in perturbation theory to give qualitatively 
correct physics, however. 

It is evident from the above discussion that one can go on to examine the other 
critical exponents and thermodynamic functions to obtain their crossover behaviour. 
It is also clear that the methodology is much more general than the restricted example 
considered here. The main insight we have used in the above is to recognize the 
importance of explicitly taking into account in the renormalization the important 
fluctuations with momenta s I / L .  This yields a simple adjustment of the counterterms 
thereby making them explicitly L-dependent. Nevertheless such a simple adjustment 
leads to a powerful new technique for examining the critical behaviour of systems 
undergoing a dimensional crossover. The main applications we have in mind at the 
moment, as stated previously, are to explain the ‘anomalous‘ experimental results in 
finite-size scaling, and to examine the validity of the finite-size scaling hypothesis 
throughout the dimensional crossover. Current experimental results associated with 
finite-size scaling come from studies of liquid He4. To investigate such a system our 
results need to be extended to a consideration of the XY model crossing over from 
three dimensions to two. Such a calculation employing the general strategy outlined 
here is perfectly feasible. One complication, however, will he the treatment of vortices 
as these will play an important role as the two-dimensional limit is approached. This 
would be an interesting calculation not only because of the experimental interest but 
also because it would illuminate the crossover between an ordinary order/disorder 
transition and a topological one. As far as experiment is concerned, however, the 
reader should note that the present formalism is applicable to many other crossovers 
of interest. For instance, for three-dimensional uniaxial dipolar ferromagnets one can 
investigate the entire crossover between three-dimensional and quasi-four-dimensional 
critical behaviour [ 111. 

As well as comparison with experiment it would also be useful to make a thorough 
comparison with the spherical model where exact calculations can be performed. Here, 
though, we are considering the situation where both the bulk and finite systems exhibit 
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critical behaviour. For the spherical model this would restrict attention to the crossover 
between four and three dimensions; however, in such a situation there are apparent 
logarithmic violations of finite-size scaling. A crucial ingredient in the relationship 
between the present formalism and the aforementioned are the corrections to scaling. 
In our methodology by finding the true L-dependent fixed point of the system we 
ensure that corrections to scaling are small. If one expanded around the bulk fixed 
point one would find very large corrections to scaling when the secondary fixed point 
played an important role. It just CO happens that because the spherical model is exact 
these corrections to scaling can be computed exactly even when large. In general this 
will not be so; in such cases our formalism will be superior. 
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